Tutorials

WordCamp2017@SG

Join Towards The Future of this whole day Conference and grab your tickets in the links below:   WordCamp Singapore ...
Read More

BeerMonths Meetup @SG

Everyone is invited to join... Highlights: 6:00-6:45 - Dinner & Drinks starts to heat up.. 6:45-7:00- 3DTEAMZ quick introduction by: ...
Read More

PC Buildup Configurator

Pick Parts. Build Your PC. Compare And Share. Computer part selection, compatibility, and pricing guidance for do-it-yourself computer builders. Assemble ...
Read More

IOR Values

IOR (Index of Refraction) - The refractive index determines how much light is bent, or refracted, when entering a material ...
Read More

Physically Based Materials Workflow

Checkout this public sessions about Physically Based Materials Workflow how it can transformed Arch Viz. During the Substance Days event ...
Read More

Benchmark your render speed

Test your machine how fast it can render using V-Ray Benchmark App. V-Ray Benchmark is a standalone application which includes ...
Read More

God Rays Effect

Take a look how to create “God Rays” using “VRayEnvironmentFog” and create a volumetric effect known as God Rays. You ...
Read More

Understanding VrayLight Select

If your 3d artist and hungry its a must to check this out:  Understanding Light Select Render Element In Vray ...
Read More

Max to VR Interactive Workflow

So you've heard about 3ds Max Interactive and you want to get your hands on it, huh? 3ds Max is ...
Read More

Next-Gen GPU Rendering

http://on-demand.gputechconf.com/gtc/2017/video/s7463-blagovest-taskov-next-generation-gpu-rendering-high-end-production-features-on-gpu.mp4   ...
Read More

Scan anything with Photogrammetry

Allegorithmic to deepen its roots into the production and delivery of pre-set content (textures, materials, etc.), we would like to ...
Read More

Smartphone as Texture Scanner

https://alg-releases.s3.amazonaws.com/2Texture_DebutDuBP_webm_0.webm How to use Smartphone as Texture Scanner A Creative Technologist at Allegorithmic. Today, He will show us how to ...
Read More

Procedural Wood Pixel Patterned

Procedural Wood Pixel Patterned for Archviz Here is the entire graph of the Pixel Patterned substance. This wooden block assembly ...
Read More

V-Ray Denoiser Quick Tutorial

Take a look at how the V-Ray Denoiser works, and what can be achieved with it. You’ll also learn how ...
Read More

Interactive Denoising with Nvidia AI

 Interactive Denoising with Nvidia Artificial Intelligence Good design is obvious: You know it when you see it. What’s less apparent ...
Read More

Vray Resumable Rendering

What is resumable rendering? In short, resumable rendering is the ability to have incomplete renders resume where they left off ...
Read More

Botelya ng Buhay

Check it out some tricks and tools of the trade in this making of: "Bottles of Life" and check where ...
Read More

What is Visual Composition

Composition! Everybody heard of it?  What is it? Imagine purchasing a book and opening it. Only to find out that ...
Read More

Exterior Lighting Setup

One of the most anticipated tutorials is finally out. We admire his work and the way he delivers his renderings ...
Read More

Camera Simulator

This tool will help you understand and play the basic DSLR Camera Controls and the outcome without buying expensive actual ...
Read More

Photorealism Explained

How to achieve CG Photorealism. Some tips and tricks from the guru over the last 11 years to make images ...
Read More

V-Ray RT GPU Shaders Breakdown

Be inspired by the images and shaders breakdown video tutorial below: Basil, wood, details shaders breakdown. V-Ray RT GPU videotutorial ...
Read More

Vray Masters in Class Singapore 2017

Featuring: Grant Warwick. Together with the lucky few! Grant Warwick is the Director of Mastering CGI. Grant left his career as a ...
Read More

Vray3.2 MasterClass 2015

Featuring:  Lyudmil Vanev - CG Specialist Chaos Group Hartanto Gautama Utama - VRay Licensed Instructor Lyudmil is a CG professional with more than 10 ...
Read More

Videos

Tips & Tricks Videos Click on the top playlist button for more recommended tutorials ...
Read More

Click on the top playlist button for more recommended tutorials…
If you need  1on1 or more basic, advance, specific tutorials. Please don’t hesitate to let us know. We have diverse experience and competitive team to recommend with tested and proven track records internationally. Learn from the right people that might truly help with your professional career advancement.

 

  • WordCamp2017@SG

    Join Towards The Future of this whole day Conference and grab your tickets in the links below:  

    WordCamp Singapore is a community-organised WordPress conference that brings together bloggers, developers, designers, artists, small business owners, entrepreneurs, and educators from Singapore and all across Asia.

    WordCamp Singapore looks to offer something for everyone, from blogging newbies to professional developers, from marketing professionals to experienced designers, from tech enthusiasts to leading technologists. Most importantly, it aims to provide a welcoming, engaging and safe space for WordPress users to get to know one another.

    This is the third time WordCamp is being held in Singapore. WordCamp Singapore 2017 will feature a good mix of interesting speakers both local & international.

    All our sessions will be conducted in English.

    Some highlights of the conference:

    • Digital Plumbing
    • Self-hosting vs Hosted
    • Localize your WordPress projects
    • How to Get Started in Business Blogging
    • WordPress Scalability
    • Add Value First
    • WordPress for IoT
    • Pressing on the WordPress – A journey from PHP programmer to WordPress entrepreneur
    • Importance of DTAP (Development, Testing, Acceptance & Production) environments
    • Poopy.life, Sandbox, and how we build products

    NOTE:
    This is a draft topics will most likely shift around to ensure a better topic balance. We recommend booking your flights to accommodate the entire conference :), the afterparty and for hanging out with new friends after!

     

    As part of 3dteamz strategic learning we are in! See you in few days…

    Thanks for subscribing Invalid email address

     

    Credits to : WordCamp Singapore

  • BeerMonths Meetup @SG

    Everyone is invited to join…

    Highlights:

    6:00-6:45 – Dinner & Drinks starts to heat up..
    6:45-7:00- 3DTEAMZ quick introduction by: Rey Gerali
    7:00-8:00 – ZBrush User Interface Introduction by: Norman Caguiat
    8:00-9:00 – Unreal Engine Interface Introduction by: Norman Anton
    9:00-10:00 – Sharing updates about Work, Life, Tech & Future.
    10:00-10:15 – 3DTEAMZ closing remarks by: Jonathan Lopez
    10:15 and Beyond – Talk anything until last man standing…

    – We encourage everyone to participate and give constructive feedback to enhance our workflow. This will help us improve our skills and enhance the way we work to stay competitive in our field and upgrade ourself for free except you pay your meals and drinks. Cheers.

    See you here > http://goo.gl/3UFHMA

    Stay tuned for more updates we will publish it very soon…

    WordCamp2017@SG

    Join Towards The Future of this whole day Conference and ...
    Read More

    Webinar: Vray GPU Rendering

    Thinking about switching from CPU to GPU rendering? Tomasz Wyszolmirski ...
    Read More

    Professional Interior Design Tips

    Design Concepts - Creating The Best For Your Client In ...
    Read More

    BeerMonths Meetup @SG

    Everyone is invited to join... Highlights: 6:00-6:45 - Dinner & ...
    Read More

    Live, Work and Play Indesign @SG

    Game-changing Designs. Leading-edge Ideas. One Remarkable Experience. You spoke, we ...
    Read More

    Designphase Articles

    Design Inspiration: As one of Asia‘s most experienced interior design ...
    Read More

    Autodesk Live Design Seminar

    RSVP link click here:   ...
    Read More

    Unreal Engine for Architecture – Webinar

    on April 27th Join visualization specialist Fabrice Bourrelly in this, ...
    Read More

    Vray Masters in Class Singapore 2017

    Featuring: Grant Warwick. Together with the lucky few! Grant Warwick is the ...
    Read More

    Vray3.2 MasterClass 2015

    Featuring:  Lyudmil Vanev - CG Specialist Chaos Group Hartanto Gautama Utama - VRay Licensed ...
    Read More

  • PC Buildup Configurator

    Pick Parts. Build Your PC. Compare And Share.

    Computer part selection, compatibility, and pricing guidance for do-it-yourself computer builders. Assemble your virtual part lists and provide compatibility guidance with up-to-date pricing from dozens of the most popular online retailers. It easy to share your part list with others, and our community forums provide a great place to discuss ideas and solicit feedback.

    PC Building Simulator Features:
    – Accurately sized 3D models of components.
    – The ability to install components, remove them and add all the cables
    – Accurate interactions where it installs just like it would in real life.
    – Simple to follow tutorial explained step by step.
    – Preview builds before starting to work on them in real life.

    This demo gives you a great taste of what the game is trying to achieve, development of the complete game is ongoing!

    To build your own  actual PC with latest price list comparison click read more below:

     

     

  • IOR Values

    IOR (Index of Refraction) – The refractive index determines how much light is bent, or refracted, when entering a material.

    Thus, using the actual IOR values of materials for 3d rendering allows you to achieve a more accurate representation of surfaces during rendering.  Download the script  drag and drop to your 3dsmax viewport for your quick guide or check the list below.

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    Common Materials
    Acrylic glass 1.490 – 1.492
    Air 1.000 –
    Alcohol, Ethyl (grain) 1.360 –
    Aluminum 1.390 – 1.440
    Asphalt 1.635 –
    Beer 1.345 –
    Bronze 1.180 –
    Copper 1.100 – 2.430
    Crystal 2.000 –
    Diamond 2.418 –
    Emerald 1.560 – 1.605
    Eye, Lens 1.410 –
    Glass 1.500 –
    Glass, Pyrex 1.474 –
    Gold 0.470 –
    Ice 1.309 –
    Iron 2.950 –
    Ivory 1.540 –
    Lead 2.010 –
    Lucite 1.495 –
    Mercury (liquid) 1.620 –
    Milk 1.350 –
    Nickel 1.080 –
    Nylon 1.530 –
    Pearl 1.530 – 1.690
    Plastic 1.460 –
    Teflon 1.350 – 1.380
    Titanium 2.160 –
    Vodka 1.363 –
    Water (35 deg C) 1.325 –

    A
    Acetone 1.360 –
    Acrylic glass 1.490 – 1.492
    Actinolite 1.618 –
    Agalmatoite 1.550 –
    Agate 1.544 1.553
    Agate, Moss 1.540 –
    Air 1.000 –
    Alcohol 1.329 –
    Alcohol, Ethyl (grain) 1.360 –
    Alcohol, Methyl (wood) 1.329 –
    Alexandrite 1.746 1.755
    Almandine 1.244 –
    Aluminum 1.244 –
    Aluminum Chloride 2.700 –
    Aluminum Oxide 1.665 –
    Amber 1.539 – 1.546
    Amblygonite 1.611 –
    Amethyst 1.532 – 1.554
    Ammolite 1.520 – 1.680
    Amorphous Selenium 2.920 –
    Anatase 2.490 –
    Andalusite 1.629 – 1.650
    Anhydrite 1.571 –
    Apatite 1.420 – 1.632
    Apophyllite 1.536 –
    Aquamarine 1.567 –
    Aragonite 1.530 –
    Argon 1.000 –
    Argonite 1.530 –
    Asphalt 1.635 –
    Augelite 1.574 –
    Axenite 1.674 – 1.704
    Axinite 1.675 –
    Azurite 1.730 –

    B
    Barite 1.636 –
    Barytocalcite 1.684 –
    Beer 1.345 –
    Benitoite 1.757 –
    Benzene 1.501 –
    Beryl 1.570 1.600
    Beryl, Red 1.570 – 1.598
    Beryllonite 1.553 –
    Borax 1.446 –
    Brazilianite 1.603 –
    Bromine (liquid) 1.661 –
    Bronze 1.180 –
    Brownite 1.567 –

    C
    Calcite 1.486 –
    Calspar 1.486 – 1.660
    Cancrinite 1.491 –
    Carbon Dioxide 1.000 –
    Carbon Disulfide 1.628 –
    Carbon Tetrachloride 1.460 –
    Carbonated Beverages 1.340 –
    Cassiterite 1.997 –
    Celestite 1.622 –
    Cerussite 1.804 –
    Ceylanite 1.770 –
    Chalcedony 1.544 – 1.553
    Chalk 1.510 –
    Chalybite 1.630 –
    Chlorine (gas) 1.001 –
    Chlorine (liquid) 1.385 –
    Chrome Green 2.400 –
    Chrome Red 2.420 –
    Chrome Tourmaline 1.610 – 1.640
    Chrome Yellow 2.310 –
    Chromium 2.970 –
    Chromium Oxide 2.705 –
    Chrysoberyl 1.745 –
    Chrysocolla 1.500 –
    Chrysoprase 1.534 –
    Cinnabar (Mecury Sulfide) 3.020 –
    Citrine 1.532 –
    Cleaner (all purpose) 1.293 –
    Clinohumite 1.625 –
    Clinozoisite 1.724 –
    Cobalt Blue 1.740 –
    Cobalt Green 1.970 –
    Cobalt Violet 1.710 –
    Colemanite 1.586 –
    Copper 1.100 2.430
    Copper Oxide 2.705 –
    Coral 1.486 –
    Cordierite 1.540 –
    Corundum 1.766 –
    Cranberry Juice (25%) 1.351 –
    Crocoite 2.310 –
    Cromite 2.160 –
    Crown Glass (impure) 1.485 – 1.755
    Crown Glass (pure) 1.500 – 1.540
    Cryolite 1.338 –
    Crysoberyl, Catseye 1.746 – 1.755
    Crystal 2.000 –
    Cubic Zirconia 2.150 – 2.180
    Cuprite 2.850 –

    D
    Danburite 1.627 – 1.641
    Diamond 2.418 –
    Diopside 1.680 –
    Dolomite 1.503 –
    Dumortierite 1.686 –

    E
    Ebonite 1.660 –
    Ekanite 1.600 –
    Elaeolite 1.532 –
    Emerald 1.560 – 1.605
    Emerald Catseye 1.560 – 1.605
    Emerald, Synth Flux 1.561 –
    Emerald, Synth Hydro 1.568 –
    Enstatite 1.663 –
    Epidote 1.733 –
    Ethanol 1.360 –
    Ethyl Alcohol 1.360 –
    Euclase 1.652 –
    Eye, Aqueous Humor 1.330 –
    Eye, Cornea 1.380 –
    Eye, Lens 1.410 –
    Eye, Vitreous Humor 1.340 –

    F
    Fabulite 2.409 –
    Feldspar, Adventurine 1.532 –
    Feldspar, Albite 1.525 –
    Feldspar, Amazonite 1.525 –
    Feldspar, Labrodorite 1.565 –
    Feldspar, Microcline 1.525 –
    Feldspar, Oligoclase 1.539 –
    Feldspar, Orthoclase 1.525 –
    Flint Glass (impure) 1.523 – 1.925
    Flint Glass (pure) 1.600 – 1.620
    Flourite 1.433 –
    Fluoride 1.560 –
    Fluorite 1.434 –
    Formica 1.470 –
    Fused Quartz 1.460 –

    G
    Gallium(III) Arsenide 3.927 –
    Gallium(III) Phosphide 3.500 –
    Garnet, Almandine 1.760 –
    Garnet, Almandite 1.790 –
    Garnet, Andradite 1.820 –
    Garnet, Demantiod 1.880 – 1.900
    Garnet, Grossular 1.720 – 1.800
    Garnet, Hessonite 1.745 –
    Garnet, Mandarin 1.790 – 1.800
    Garnet, Pyrope 1.730 – 1.760
    Garnet, Rhodolite 1.740 – 1.770
    Garnet, Spessartite 1.810 –
    Garnet, Tsavorite 1.739 – 1.744
    Garnet, Uvarovite 1.740 – 1.870
    Gaylussite 1.517 –
    Glass 1.500 –
    Glass, Albite 1.489 –
    Glass, Arsenic Trisulfide 2.040 –
    Glass, Crown 1.520 –
    Glass, Crown, Zinc 1.517 –
    Glass, Flint, 29% lead 1.569 –
    Glass, Flint, 55% lead 1.669 –
    Glass, Flint, 71% lead 1.805 –
    Glass, Flint, Dense 1.660 –
    Glass, Flint, Heaviest 1.890 –
    Glass, Flint, Heavy 1.655 –
    Glass, Flint, Lanthanum 1.800 –
    Glass, Flint, Light 1.580 –
    Glass, Flint, Medium 1.627 –
    Glass, Fused Silica 1.459 –
    Glass, Pyrex 1.474 –
    Glycerine 1.473 –
    Glycerol 1.473 –
    Gold 0.470 –
    Gypsium 1.519 –

    H
    Hambergite 1.559 –
    Hauyn 1.490 – 1.505
    Hauynite 1.502 –
    Heaviest Flint Glass 1.890 –
    Heavy Flint Glass 1.650 –
    Helium 1.000 –
    Hematite 2.940 –
    Hemimorphite 1.614 –
    Hiddenite 1.655 –
    Honey, 13% water content 1.504 –
    Honey, 17% water content 1.494 –
    Honey, 21% water content 1.484 –
    Howlite 1.586 –
    Hydrogen (gas) 1.000 –
    Hydrogen (liquid) 1.097 –
    Hypersthene 1.670 –

    I
    Ice 1.309 –
    Idocrase 1.713 –
    Iodine Crystal 3.340 –
    Iolite 1.522 1.578
    Iron 2.950 –
    Ivory 1.540 –

    J
    Jade, Jadeite 1.640 – 1.667
    Jade, Nephrite 1.600 – 1.641
    Jadeite 1.665 –
    Jasper 1.540 –
    Jet 1.660 –

    K
    Kornerupine 1.665 –
    Kunzite 1.660 1.676
    Kyanite 1.715 –

    L
    Labradorite 1.560 – 1.572
    Lapis Gem 1.500 –
    Lapis Lazuli 1.500 – 1.550
    Lazulite 1.615 –
    Lead 2.010 –
    Lead Nitrate 1.782 –
    Leucite 1.509 –
    Light Flint Glass 1.575 –
    Liquid Carbon Dioxide 1.200 –
    Liquid Water (20deg C) 1.333 –
    Lucite 1.495 –

    M
    Magnesite 1.515 –
    Malachite 1.655 –
    Meerschaum 1.530 –
    Mercury (liquid) 1.620 –
    Methanol 1.329 –
    Milk 1.350 –
    Moissanite 2.650 – 2.690
    Moldavite 1.500 –
    Moonstone 1.518 – 1.526
    Moonstone, Adularia 1.525 –
    Moonstone, Albite 1.535 –
    Morganite 1.585 1.594
    Mylar 1.650 –

    N
    Natrolite 1.480 –
    Nephrite 1.600 –
    Nickel 1.080 –
    Nitrogen (gas) 1.000 –
    Nitrogen (liq) 1.205 –
    Nylon 1.530 –

    O
    Obsidian 1.486 – 1.500
    Oil of Wintergreen 1.536 –
    Oil, Clove 1.535 –
    Oil, Lemon 1.481 –
    Oil, Neroli 1.482 –
    Oil, Orange 1.473 –
    Oil, Safflower 1.466 –
    Oil, vegetable (50deg C) 1.470 –
    Olivine 1.670 –
    Onyx 1.486 –
    Onyx Marble 1.486 –
    Opal 1.450 –
    Opal, Black 1.440 – 1.460
    Opal, Fire 1.430 – 1.460
    Opal, White 1.440 – 1.460
    Oregon Sunstone 1.560 – 1.572
    Oxygen (gas) 1.000 –
    Oxygen (liquid) 1.221 –

    P
    Padparadja 1.760 – 1.773
    Painite 1.787 –
    Pearl 1.530 – 1.690
    Periclase 1.740 –
    Peristerite 1.525 –
    PET 1.575 –
    Petalite 1.502 –
    PETg 1.570 –
    Phenakite 1.650 –
    Phosgenite 2.117 –
    Plastic 1.460 –
    Platinum 2.330 –
    Plexiglas 1.500 –
    PMMA 1.489 – 1.490
    Polycarbonate 1.584 –
    Polystyrene 1.550 –
    Prase 1.540 –
    Prasiolite 1.540 –
    Prehnite 1.610 –
    Proustite 2.790 –
    Purpurite 1.840 –
    Pyrite 1.810 –
    Pyrope 1.740 –

    Q
    Quartz 1.544 – 1.644
    Quartz, Fused 1.458 –

    R
    Rhodizite 1.690 –
    Rhodochrisite 1.600 –
    Rhodonite 1.735 –
    Rock salt 1.516 1.544
    Rubber, Natural 1.519 –
    Ruby 1.757 1.779
    Rum, White 1.361 –
    Rutile 2.620 –

    S
    Salt (NaCl) 1.544 –
    Sanidine 1.522 –
    Sapphire 1.757 – 1.779
    Sapphire, Star 1.760 – 1.773
    Scapolite 1.540 –
    Scapolite, Yellow 1.555 –
    Scheelite 1.920 –
    Selenium, Amorphous 2.920 –
    Serpentine 1.560 –
    Shampoo 1.362 –
    Shell 1.530 –
    Shower gel 1.510 –
    Silicon 4.010 4.240
    Sillimanite 1.658 –
    Silver 0.180 1.350
    Sinhalite 1.699 –
    Smaragdite 1.608 –
    Smithsonite 1.621 –
    Sodalite 1.483 –
    Sodium Chloride 1.544 – 1.644
    Spessarite 1.790 1.810
    Sphalerite 2.368 –
    Sphene 1.885 –
    Spinel 1.712 1.717
    Spinel, Blue 1.712 – 1.747
    Spinel, Red 1.708 – 1.735
    Spodumene 1.650 –
    Star Ruby 1.760 – 1.773
    Staurolite 1.739 –
    Steatite 1.539 –
    Steel 2.500 –
    Stichtite 1.520 –
    Strontium Titanate 2.410 –
    Styrofoam 1.595 –
    Styrene 1.519 –
    Sugar Solution 30% 1.380 –
    Sugar Solution 80% 1.490 –
    Sulphur 1.960 –
    Synthetic Spinel 1.730 –

    T
    Taaffeite 1.720 –
    Tantalite 2.240 –
    Tanzanite 1.692 – 1.700
    Teflon 1.350 1.380
    Thomsonite 1.530 –
    Tiger eye 1.544 –
    Tin Iodide 2.106 –
    Titanium 2.160 –
    Topaz 1.607 1.627
    Topaz, Blue 1.610 –
    Topaz, Imperial 1.605 – 1.640
    Topaz, Pink 1.620 –
    Topaz, White 1.630 –
    Topaz, Yellow 1.620 –
    Tourmaline 1.603 – 1.655
    Tourmaline, Blue 1.610 – 1.640
    Tourmaline, Catseye 1.610 – 1.640
    Tourmaline, Green 1.610 – 1.640
    Tourmaline, Paraiba 1.610 – 1.650
    Tourmaline, Red 1.610 – 1.640
    Tremolite 1.600 –
    Tugtupite 1.496 –
    Turpentine 1.472 –
    Turquoise 1.610 – 1.650

    U
    Ulexite 1.490 –
    Uvarovite 1.870 –

    V
    Vacuum 1.000 –
    Variscite 1.550 –
    Vivianite 1.580 –
    Vodka 1.363 –

    W
    Wardite 1.590 –
    Water (0 deg C) 1.333 –
    Water (100 deg C) 1.318 –
    Water (20 deg C) 1.333 –
    Water (gas) 1.000 –
    Water (35 deg C) 1.325 –
    Water Ice 1.310 –
    Whisky 1.356 –
    Wulfenite 2.300 –

    X
    x – 000

    Z
    Zinc Crown Glass 1.517 –
    Zincite 2.010 –
    Zircon 1.777 1.987
    Zircon, High 1.960 –
    Zircon, Low 1.800 –
    Zirconia, Cubic 2.173 – 2.210

     

    Click the image to download the script.

    Please note  it is for general usage in 3d applications only and not for scientific use.

     

     

  • Physically Based Materials Workflow

    Checkout this public sessions about Physically Based Materials Workflow how it can transformed Arch Viz.

    During the Substance Days event featuring masterclasses, keynotes and talks by some of the top Substance users from around the world. What impressed the most was the ability of some of these artists to create the impressive textures they do. If your current texture pipeline, like many, revolves around photographs, scans and Photoshop, your first exposure to Substance might seem daunting, as it really does require a completely different thought process. While much of the work is done in a node graph similar to many shader pipelines, the way you build procedural materials requires that you look at materials around you like puzzles that need to be solved. And as a result some of these node trees can get pretty intense.

    The line up of speakers this year was impressive to say the least, but they had a chance to ask Scott a few questions about his presentation this year. He provided insight into their current pipeline and detailed the work they recently completed on the new NVIDIA headquarters.

    Hit that Play button to watch, listen & learn from the experts in the industry…

    Credits to Cgarchitect & Allegorithmic

    Check out for more recommended tutorials below:

    WordCamp2017@SG

    Join Towards The Future of this whole day Conference and grab your tickets in the links below:   WordCamp Singapore ...
    Read More

    BeerMonths Meetup @SG

    Everyone is invited to join... Highlights: 6:00-6:45 - Dinner & Drinks starts to heat up.. 6:45-7:00- 3DTEAMZ quick introduction by: ...
    Read More

    PC Buildup Configurator

    Pick Parts. Build Your PC. Compare And Share. Computer part selection, compatibility, and pricing guidance for do-it-yourself computer builders. Assemble ...
    Read More

    IOR Values

    IOR (Index of Refraction) - The refractive index determines how much light is bent, or refracted, when entering a material ...
    Read More

    Physically Based Materials Workflow

    Checkout this public sessions about Physically Based Materials Workflow how it can transformed Arch Viz. During the Substance Days event ...
    Read More

    Benchmark your render speed

    Test your machine how fast it can render using V-Ray Benchmark App. V-Ray Benchmark is a standalone application which includes ...
    Read More

    God Rays Effect

    Take a look how to create “God Rays” using “VRayEnvironmentFog” and create a volumetric effect known as God Rays. You ...
    Read More

    Understanding VrayLight Select

    If your 3d artist and hungry its a must to check this out:  Understanding Light Select Render Element In Vray ...
    Read More

    Max to VR Interactive Workflow

    So you've heard about 3ds Max Interactive and you want to get your hands on it, huh? 3ds Max is ...
    Read More

    Next-Gen GPU Rendering

    http://on-demand.gputechconf.com/gtc/2017/video/s7463-blagovest-taskov-next-generation-gpu-rendering-high-end-production-features-on-gpu.mp4   ...
    Read More

    Scan anything with Photogrammetry

    Allegorithmic to deepen its roots into the production and delivery of pre-set content (textures, materials, etc.), we would like to ...
    Read More

    Smartphone as Texture Scanner

    https://alg-releases.s3.amazonaws.com/2Texture_DebutDuBP_webm_0.webm How to use Smartphone as Texture Scanner A Creative Technologist at Allegorithmic. Today, He will show us how to ...
    Read More

    Procedural Wood Pixel Patterned

    Procedural Wood Pixel Patterned for Archviz Here is the entire graph of the Pixel Patterned substance. This wooden block assembly ...
    Read More

    V-Ray Denoiser Quick Tutorial

    Take a look at how the V-Ray Denoiser works, and what can be achieved with it. You’ll also learn how ...
    Read More

    Interactive Denoising with Nvidia AI

     Interactive Denoising with Nvidia Artificial Intelligence Good design is obvious: You know it when you see it. What’s less apparent ...
    Read More

    Vray Resumable Rendering

    What is resumable rendering? In short, resumable rendering is the ability to have incomplete renders resume where they left off ...
    Read More

    Botelya ng Buhay

    Check it out some tricks and tools of the trade in this making of: "Bottles of Life" and check where ...
    Read More

    What is Visual Composition

    Composition! Everybody heard of it?  What is it? Imagine purchasing a book and opening it. Only to find out that ...
    Read More

    Exterior Lighting Setup

    One of the most anticipated tutorials is finally out. We admire his work and the way he delivers his renderings ...
    Read More

    Camera Simulator

    This tool will help you understand and play the basic DSLR Camera Controls and the outcome without buying expensive actual ...
    Read More

    Photorealism Explained

    How to achieve CG Photorealism. Some tips and tricks from the guru over the last 11 years to make images ...
    Read More

    V-Ray RT GPU Shaders Breakdown

    Be inspired by the images and shaders breakdown video tutorial below: Basil, wood, details shaders breakdown. V-Ray RT GPU videotutorial ...
    Read More

    Vray Masters in Class Singapore 2017

    Featuring: Grant Warwick. Together with the lucky few! Grant Warwick is the Director of Mastering CGI. Grant left his career as a ...
    Read More

    Vray3.2 MasterClass 2015

    Featuring:  Lyudmil Vanev - CG Specialist Chaos Group Hartanto Gautama Utama - VRay Licensed Instructor Lyudmil is a CG professional with more than 10 ...
    Read More

    Videos

    Tips & Tricks Videos Click on the top playlist button for more recommended tutorials ...
    Read More

  • Benchmark your render speed

    Test your machine how fast it can render using V-Ray Benchmark App.

    V-Ray Benchmark is a standalone application which includes a single GPU scene and a single CPU scene. Just download app here  or this link and run the test. You can also check Benchmark  results  below or this link and compare your computer specs and render speed with others or share your results online.

    You can also add notes to let others know what mods you’ve made, like water cooling and overclocking. Best of all, V-Ray Benchmark is free and does not require a V-Ray license.

    Note:   Results of V-Ray Benchmark are based on the included CPU and GPU scenes.

    You may like to share your screenshot to our social media and #3dteamz Vray Benchmark

     

    Credits to Chaosgroup

  • God Rays Effect

    Take a look how to create “God Rays” using “VRayEnvironmentFog” and create a volumetric effect known as God Rays. You can also download the 3d scene below for you to enjoy and try:


     

    Credits to: Chaosgroup

    Free Cargo Ship 3D Scene:


     

  • Understanding VrayLight Select

    If your 3d artist and hungry its a must to check this out:  Understanding Light Select Render Element In Vray For 3ds Max.

    Overview


    The Light Select Render Element represents the lighting contribution from one or more selected lights in the scene. Each Light Select channel can output selected lights’ raw, diffuse, or specular contributions to the illumination, or overall (normal) contribution. When multiple lights are selected, all the contributions from the selected lights are combined into a single render element. Multiple VRayLightSelect elements can be rendered for a single scene, and lights may be included in more than one VRayLightSelect element.

    This element is similar to the Lighting Render Element. However, the Lighting element combines the effect of all lights in the scene while the Light Select element allows for a user-selection light or set of lights to be broken out, showing their own individual effect(s) on the scene’s illumination. By using these render elements, specific lights in the resulting render can be adjusted (color, temperature, brightness, etc.) in a composite without the need for re-rendering.

    For example, by generating a Light Select element for all of the backlights in a scene, an artist may adjust the backlighting of the rendered scene easily in the composite without affecting the rest of the scene’s illumination.

     Hit Play Button >

    Compositing Equation


    The following diagram shows the compositing formula to recreate all the light in a scene in its most basic form, but only when each light in the scene is accounted for in exactly one VRayLightSelect element for a particular mode. If a particular light is used in more than one VRayLightSelect element, this equation will result in brighter lighting than intended because that light will contribute lighting more than once.

     

    Notes


    • When using VRayLightSelect, a good practice is to have one VRayLightSelect element for each light source in your scene. This way the Lighting element can be recreated from them, and adjusted as needed while compositing without re-rendering.
    • If the VRayLightSelect element mode is set to Direct illumination, the specular contribution is added to the render element. While this is perfect for simple compositing, a better workflow is for each light to be selected for two VRayLightSelect Render Elements, one with its mode set to Direct diffuse and another with its mode set to Direct specular. In this way, the specular and diffuse lighting can both be controlled independently at a composite level.

     

    Source Credits to: Chaosgroup

     

  • Max to VR Interactive Workflow

    So you’ve heard about 3ds Max Interactive and you want to get your hands on it, huh?


    3ds Max is now combined with 3ds Max Interactive, a powerful VR engine that gives you the ability to go from Max to VR in just a few clicks. If you’re a current subscriber, you’ll notice a new Interactive menu when you open 3ds Max 2018.1: this will launch 3ds Max Interactive, our new 3D to VR creative workflow for design viz artists like you.

    Ready to take the leap? Starting today, you can download both 3ds Max 2018 Update 1 and 3ds Max Interactive as two separate downloads from your desktop account, provided you’re a current 3ds Max, suite or collection subscriber.

    Here’s how to get set up:

    Are you more of a step-by-stepper? Here’s a how-to in a few steps:


    UPDATE 3DS MAX TO 2018.1

    1. Launch the Autodesk Desktop App.


    2. Once in the Autodesk Desktop App, open the My Updates menu in the top left corner. Click on Autodesk 3ds Max 2018.1 Update, then click Update to start the download. 3ds Max 2018.1 will automatically install once the download is complete.

    3. Don’t have the Autodesk Desktop App? No problem. Open up a browser and head on over to your Autodesk Account.

    4. Under Product Updates, locate 3ds Max 2018 Update 1 and click Download.

    5. Once your download is complete, simply follow the install instructions.

    6. Huzzah! You’ve got 3ds Max 2018 Update 1. Next, go ahead and launch 3ds Max.

    INSTALL MAX INTERACTIVE

    1. Once 3ds Max is open, you’ll notice a new welcome screen.

    2. This will open up a browser, where you’ll log in to your Autodesk Account. From here, click on All Products & Services (top left) and select the Downloads button on the 3ds Max tab.

    3. Next, you’ll see a pop-up for all available 3ds Max downloads. Find 3ds Max Interactive and click Download now. Follow the download instructions and click the Install button.

    4. From here, you’ll open up the 3ds Max Interactive installer. Follow the install instructions, enter your country, accept the License and Services agreement and click Next.

    5. You’ll need a serial number for this next step, but luckily you’ve already got one! Use your 3ds Max 2018 serial number from your Autodesk Account and click Next.

    6. Once you receive a confirmation that your serial number has been found and activated, click Finish to complete your install. Sit back, relax, stretch, hydrate – oh, wait, it’s done installing already?

    7. You’ll get a notification once the installation has successfully completed, and now it’s time to launch 3ds Max Interactive.

    8. It’s happening!

    9. Decisions, decisions. Pick the appropriate template for the type of project you want to create.

    10… the sky’s the limit! Happy creating.

    READY TO GO FROM MAX TO VR?

    On Monday, June 12th, we’ll be kicking off our journey from 3ds Max to VR. Join us for 10 days of short video power tutorials to get you up and running with VR content creation, and familiar with the tools and terminology.

    Bonus: you’ll walk away with solid understanding of the fluid workflow between 3ds Max’s powerful 3D tools and with the new interactive toolset. Pretty sweet.

     

    Source Credits to:
    Design Visualization Team Autodesk Blogs

     

  • Next-Gen GPU Rendering

     

  • Scan anything with Photogrammetry

    Allegorithmic to deepen its roots into the production and delivery of pre-set content (textures, materials, etc.), we would like to share today some knowledge that we gathered about the use of photogrammetry in order to scan materials surrounding us.

    As a member of Allegorithmic Labs, I spend my time experimenting with crazy ideas, new gear and prototype software. When you combine that with my background as a professional Digital Operator (here), I could only find the subject of photogrammetry fascinating. But while the process of utilizing expansive cameras and optics to capture your data is fairly documented, it was unclear we could do this with a simple smartphone.

    I decided to dig into the subject and give it a try and because, well, “it works!”, the goal of this blog post is to provide you with all you need to setup a low-cost, DIY pipeline for high quality material scanning using photogrammetry.

    As you will see, there is no magic involved, only the right tools (Substance of course), so I encourage everyone to go for it and make their own scanned materials. Let’s scan the world!

    SHOOTING

    In the case of capturing on a mobile device, it’s important to choose a photo app that can save uncompressed photos and provides manual exposure controls. In our case, we used a Samsung Galaxy S6 and the FV-5 camera app.

    On a photogrammetry shoot, the goal is to capture a picture as sharp as possible and without any noise. The lens’s aperture on a smartphone is often locked or not easily adjustable, so we need to find an exposure setting that will suit our needs. The exposure needs to be good enough to keep the ISO as low as possible (close to 100) and the shutter speed high enough to avoid motion blur. Also, you need to set the White Balance on manual to avoid color shift between images.

    In terms of light quality for the photogrammetry shoot, it’s best to wait for the lighting to be diffused such as on a cloudy day. Alternatively, you can use a diffuser disc such as the Photoflex LiteDisc.

    The diffused light will minimize harsh shadows, which will produce a better color map. In our case, we took advantage of the overcast sky for the shoot.

    For a tree, we need to take a series of photographs around the trunk. We move around the trunk 360 degrees, while taking a new photo at equidistant intervals.

    Don’t forget to keep enough overlap between each photo as it will help the algorithms to provide a better result .

    Intensive shooting can quickly drain the battery, so do not hesitate to pack an external battery for backup 😉

    PHOTOGRAMMETRY

    Back at the office, we will continue our work using a specific software for photogrammetry.

    There are different software on the market, but for our example we have chosen PhotoScan Standard from Agisoft.

    The typical process for reconstructing the data is as follows: import the images, working with the Point Cloud data, and finally the Mesh reconstruction. In this example we will be focusing only on one part of the tree. At the end of the process, we’ll have a High Poly Mesh, around 15M polygons, and a Color Texture in 8K format. As you can see, data captured using a mobile phone can still provide good results for photogrammetry.

    POST PROCESS

    The High Poly Mesh is around 15M polygons and to fit into a standard workflow, we have to transfer the High Poly detail to a Low Poly Mesh. Here you can use the integrated bakers in Substance Designer or Substance Painter. You can also use your favorite 3D package for the Low Poly Mesh creation process.

    In our case, we used Blender, for the Low Poly Mesh and the Normal / Color Baking. You can find a very nice tutorial from Darrin Lile here.

    If you would like to work with a Height map, you can use Substance Designer to convert your Normal Texture into a Height Texture. In Substance Designer, you simply connect your Normal Texture into the Normal to Height node to produce the height data. Finally, go to Menu Bar, Tools/Prefrences…/General/Cooker/Cooking size limite, type 8192, then set the Output Size to 13 to produce an 8K texture. And voilà, you have your Height Texture.

    Now, we have our Low Poly Mesh, which can be used in any 3D application, but we have some holes and artefacts.

    In this case, it’s possible to fix these issues using Substance Painter.

    Substance Painter can import and export 8K maps. It’s possible to import our Color Texture in 8K, work on it in 4K and export the result in 8K as Substance Painter doesn’t upscale the textures. Substance Painter will actually recompute the texture to a lossless 8K size.

    After importing the Mesh, Color, Normal and Height map, we simply add a Fill Layer with all textures. You can then add any additional channels that may be needed and set the resolution to 4K.

    Next, we can use the Clone Tool to fix issues. By working on a new layer, you separate the clone data from the base photogrammetry.

    Just, don’t forget to switch the blending mode for all channels to PassThrough. By using the PassThrough blending mode, all channels below the Clone Layer are copied.

    And like others Brushes in Substance Painter, the Clone Tool works across all channels in a single stroke, you can clone the Color, as well as the Height and/or the Normal at the same time. It’s a huge time saver.

    To remove as much of the lighting visible in the Color Texture as possible, we can use a filter we created in Substance Designer. This filter is a Work In Progress and will be available in a future release.

    (Click here to download it)

    This filter can remove the lighting based on a Color Reference and the Ambient Occlusion (computed with the High Poly Mesh). The end result is a Color Texture that is more versatile and neutral, and can be used in different lighting conditions.

    FINISHING

    Now, everything is fixed. We can start working on an augmented material, aka adding manual or procedural details to the scan.

    Let’s started by a baking all of the additional maps, like World Space Normal, Ambient Occlusion, Curvature, Position and Thickness. Substance Painter can bake this 15M polygon Mesh very quickly.

    For example, we can add some moss on our tree. We found on Substance Share a Moss Material, and imported it into Substance Painter.

    We are off to a good start, simply by adding this material to a Fill Layer and using the Moss Smart Mask. If we play with the Mask Builder Parameters and the World Space Normal, it’s easy to put more moss on one side, like if it was on the North Side of our tree. We can add more details by adding another Smart Mask and finally use the “Organic Spread” Particle Brush to add some final touches.

    For another example, we can burn our tree.

    Just added a new Fill Layer with a smoke material, add a Mask and use the “Burn” Particle Brush. If you choose a large Brush Size, you can get a nice result.

    Finally you can export all Textures and Additional Maps in 8K and render the results in your favorite renderer. As you can see in this example, the 8K export from Substance Painter is lossless and is the same quality as the Color Texture from the Photogrammetric Software.

    We’re now entering an era of scanning, and nothing should prevent everyone to be able to produce and customize their own scans. So I invite you all to go outside and just take pictures of materials you like. The knowledge and tools are here today to help you turn them into production-ready textures.

    In the coming weeks, we will also publish a second part to this tutorial covering how to convert a scan like this into a seamless PBR material Substance Painter and Substance Designer.

    Anyways, here you go, I hope you liked it! This blog is a first, little step for Allegorithmic and we will soon share more info and announcements. Stay tuned 🙂

    Credits: Anthony Salvi From: allegorithmic

  • Smartphone as Texture Scanner

    How to use Smartphone as Texture Scanner

    A Creative Technologist at Allegorithmic. Today, He will show us how to use a smartphone camera to capture a material. Using the new scan filters in Substance Designer 6, it’s possible to transform a smartphone into a material scanner.

    First of all, it’s important to find the right balance between quality and cost. For the cost part, we will use a cardboard box, a stack of sheet of tracing paper and an LED light for our lighting setup. For the image capture, we want to look at using the best process possible, so for our tests, we used an iPhone 6s and iPhone 7 as our camera with the Adobe Lightroom mobile app.

    This app allows you to capture in RAW (uncompressed) format on iOS and Android. Adobe Lightroom also has some very nice features such as full manual shooting and High Dynamic Range modes. However, you can find other apps like ProCam on the App Store or Camerafv5 for Android.

    With Substance Designer 6, we have a new filter named Multi-angle to Normal that has 8 possible inputs. To use the filter, we have to produce 8 images at 45° around our material.

    To understand the image capture process, we can imagine our material on a much larger scale. Let’s imagine our material is at the scale of a mountain. At this size, our light can represent the sun. If the sun turns around the mountain, we can see the shape of the shadows cast in black. These shapes represent the indirect information about the relief of the mountain itself. If we combine enough information, at least 4 images (using 8 for a better result), the algorithm can calculate the relief.

    The process is simple. We just need to turn the light 8 times at the same distance around our material.

    Gear

    To help us, we can draw a circle on our sheet with our 8 angles. You can download our template at this link.

    To improve our chart, we can switch the color to black to reduce the lighting bounces from our LED light onto our material sample. Then we add some shapes (square, triangle, moon, star etc.) at the 8 angles, which are useful in post-process. These shapes are used by the photomerge process in Adobe Photoshop. They help Photoshop to produce a quick and accurate merging.

    Finally, we draw a 10cm by 10cm square at the center to cut a hole for our opacity shoot.

    Next, we will setup the scanbox. The box is as simple as possible, but it’s very important to retain the ability to capture the opacity of a material. To capture opacity, we will use a square hole (10cm x 10cm) at the center of the box and a stack of 6 sheets of tracing paper to diffuse the light through the material, plus a last sheet on top of the chart, as you can see in these image below:

    Don’t forget a hole to put the LED light inside the box as well.
    To finish our setup and to reduce the cost, we used a simple cardboard tube with a foam core plate to create a stand for our smartphone. To maximize the final frame, the stand size is calibrated to the size of the box. We added a black paper sheet to remove all potential color bounces coming from the cylinder. Finally, the smartphone is attached with 4 pieces of tape.

    Here is the final setup with the scanbox and the stand. The stand is not as stable as a tripod and so it needs to be held in hand.

    During the capture, it’s always a good idea to neutralize the color shift coming from the lighting. By nature, all lights have a color tint with some tints stronger than others. For example, a candle is red, a tungsten bulb is orange, the sky is blue. To neutralize this color and keep color consistency, a ColorChecker is required. Basically, it’s a reference, with a gray scale printed and calibrated.

    The goal in post-production is to adjust the gray color captured and keep it as a pure gray. You can find more info about this product here and here.

    The LED is designed by Manfrotto and produces a well-balanced daylight.

    This is our toolbox:
    – A cardboard box with a multi-angle chart
    – A cardboard stand
    – A LED light + tripod + string
    – A ColorChecker
    – A microfiber cloth
    The photo shoot

    Our goal will be to capture 2 materials: a leather and a complex fabric. We need to make sure that the only light visible on our material is coming from our LED light. If not, the shadow cast can be wrong and the post-processing in Substance Designer will produce an erroneous computation. So, just close the windows or curtains to darken the room and eliminate as much ambient light as possible and turn on your LED light on. Next, we place our material on the box.

    Be sure the material is not covering the little shapes (square, triangle, moon, star, or whatever you’re using). Then, clean your sample, as dust or hair will often fall onto our material. The most important thing is to not move the material sample during the shooting! If the material moved, the photo-merge cannot be done correctly.

    A string is attached to the LED light. We use a simple knot on the string as a metering guide between our LED light and the chart points around the circle on the box.

    The most important angle is the altitude. See the graph below:

    If the angle is too low, the shadow casting could be too long and we stand to lose some information in these shadow areas. The result will be an erroneous normal map computation with a flat result in the darker areas.

    The trick is to find an angle to preserve information and provide enough shadowing for a good result.

    Now it’s time to work on our camera. Start to clean your lens. Often our smartphone isn’t really clean. It takes 5 seconds to clean the lens with a microfiber cloth.

    With Adobe Lightroom mobile you can use the PRO mode and manually set up your shot or use the HDR mode. Both deliver good results.

    In the PRO mode, turn the flash off, activate the DNG format, set the ISO as low as possible (25 to 100) and set the White Balance to Daylight. To avoid motion blur in your image, keep a speed around 1/50 sec and adapt your ISO to get a good exposure.

    You will find more and tutorials on using Adobe Lightroom for mobile here.

    Another option is to use the HDR mode and activate the Save Uncompressed Original option. In this configuration, you have both, the original dng file and the “HDR” dng computed.

    It can be helpful to add the grid and the level on screen for framing the shot. You can also add a timer for 5 seconds to act as a remote trigger for capturing the image. This will provide a more stable result as manually touching the shutter button on the camera can inadvertently add a shake, which can produce a blurrier image.

    If you have an Adobe Creative Cloud account you can import your images into your Adobe Lightroom Desktop library.

    Here is a tutorial on importing content.

    Once everything is set, it’s time to capture the material. Set the LED lighting power to maximum. Make sure you have enough battery power (smartphone and LED light) and that the LED light doesn’t become too hot. During the shoot, it’s important to keep the same framing as much as possible. However, don’t panic if your pictures are not perfectly aligned. It’s more important to keep all of the shapes (square, triangle, moon, star etc.) on the chart visible in the images.

    Now we can shoot a reference with our ColorChecker under the same LED light.

    After we take the 8 material shots and 1 color reference image, we can shoot three more pictures. One for the color, one for the new white balance and one for the opacity (for the fabric).

    For the color, we need soft and diffuse lighting. In our case, we used the indirect light coming from a window and bounced in an aluminum paper sheet. It’s not perfect, but it’s a good base. Of course, we have more options for this lighting, but this was the simplest in our case.

    Don’t forget to shoot a new ColorChecker to set the color correction in post production.

    For opacity, open the curtains in the room and setup the LED light inside the box. With the LED light at a low power, we have enough backlight for capturing opacity.

    For a better light diffusion, you can add white paper on the inside and have the light centered in the middle of the scanbox: a foam core plate with a hole works well.

    Now we have our 8 angles, 1 color, 1 opacity and 2 ColorChecker images. Next, we import our images in Adobe Lightroom Desktop. With Adobe Creative Cloud activated, all images are in our hard drive.

    In our case, we used the “HDR” dng files, but as we explained, the dng files from the PRO mode deliver a good result as well. For the ColorChecker images, we keep the regular dng file.

    Let’s select the ColorChecker image for the LED light and use the White Balance tool.

    Then, we have to set the parameters Whites, Blacks, and Clarity at 0 and finally copy and paste the values of the parameters to the 8 angle images.

    We can repeat this process for the ColorChecker image in daylight and apply the new value on our color and opacity images. Also, set the parameters Whites, Blacks and Clarity at 0.

    For the opacity image, we can use the gradient tool in Lightroom to reduce the vignette effect.

    For the last step, we exported all of the images as TIFF 16bit using the Adobe 1998 ICC profile.

    Our phone stand was simple and cheap but not very efficient. However, this isn’t a problem. Using the photomerge feature in Adobe Photoshop, it’s possible to merge and align the images. Just load your pictures in photomerge and uncheck the Blend Images Together option.

    After that, add a solid black layer at the bottom of the layer stack and crop your image on a square and resize it to 4096 pixels.

    Finally export your layer stack in a new individual TIFF file with the remove layers option.
    Creating the seamless material in Substance Designer

    For the leather material, we created a new Substance using the Physically Based (Metallic/Roughness) template set to 4096×4096 in size. Then we linked our pictures to our project.

    The first node we used was the Multi Crop. It’s useful to select which area of the image we want to target for our material. This crop can be critical when the tiling is difficult. But with the procedural approach, you can easily test different crops for a better tiling. After that, we used the Multi Color Equalizer to clean our images and finally a Multi-Angle to Normal node to generate the normal map.

    We can add our color image and just copy paste our Multi Crop node and set the input Count to 1.

    With the Color Equalizer node we can balance the light and dark values to produce a better color map for our material.

    Now it’s time for the tiling part. With the new Smart Auto Tile node, you can quickly create a seamless material. Don’t hesitate to move, rotate and transform your pattern to get the best result possible.

    For more information, you can find a tutorial here.

    The new Color Match node is perfect for changing the color of our leather while retaining all the details. It gives you an endless variety of colors options with the benefit of mixing with the initial color captured data.

    The Specular Level can be vital to achieving realistic results. With the Metallic/Roughness definition, when the Metallic is set to 0, the material is understood to be a dielectric and the reflectance value at the Fresnel zero angle or f0 is set to 4% reflective. This works for most common dielectric materials, but some dielectrics can have a different Index of Refraction or IOR. The Specular Level can be used to override the default 4% value used in the metallic/roughness definition. Here, we have a leather and we can use the Specular Level to set a custom level for the leather material.

    To drive this channel, just add a new Output node and set the usage and identifier to specularLevel. Then adjust the value by using a Uniform Color node in Grayscale Mode. A value of 60 is a good start for a leather.

    For the Height map, we used the node Normal to Height HQ and set the quality to High.

    At last, we worked on the Roughness and used the Height map to drive 2 values between the bumps.

    The easier part is for the Metallic channel. Just add a Uniform Color node, set on Grayscale and at 0.

    After these few steps, finally, here is the complete graph.

    Our leather sample was pretty matte, and after some tests we found the good values for our leather and voilà 🙂

    Creating the fabric material

    The process is quite similar, with the same Specular Level output set at 60, except we have the opacity channel.

    Using a Color Equalizer and a Color to Mask node, we can have good control over the opacity mask for our material. We then just need to add an Output node with the Usage and Identifier set to opacity.

    One caveat with the Smart Auto Tile is that there is not an opacity input. To work around this, we can plug the opacity in the Height input and use the Height output for our opacity channel.

    As with the leather, we can use the Color Match node to easily transform our scanned material into a hybrid material with multiple color options.

    But of course, we can use our color image as well 🙂

    And at the end, the complete graph:

    Conclusion

    At the end of this process, we have 2 hybrid materials, scanned with our smartphone and ready to use in a PBR pipeline. All Substances and images are available at this link.

    Don’t hesitate to play with material settings and explore the scanning process. Next time you need some material references, grab your smartphone, build your own scanbox and have fun with Substance Designer 6!
    One more thing

    In a previous blog post about photogrammetry, we showed a specific use case. However, now with Substance Designer 6, it’s easy to convert our photogrammetry maps in a single tiling material.

    Photogrammetry is really fun, but it means your material is dependent on your object. Maybe you would like something more versatile. Fortunately, with Substance Designer 6, it’s easy to convert our photogrammetry maps in a single tiling material. After this step, your material will be usable on any mesh.

    The job was done in 3 simple steps:

    1. Crop the good area in our map exported from Substance Painter.
    2. Make it tile with the Smart Auto tile node.
    3. Balance the color with the Color Match node to erase/smooth the color variations.

    (8k workflow)

    And now, we can apply this texture on a simple cylinder and view our bark 🙂

    You can find the Substance file and images here.

    As you can see, you have multiple usages for these new scanning nodes in Substance Designer 6.

    We hope you will find this one interesting and that it gives you more ideas on what you can achieve with Substance Designer 6!

    Credits: Anthony Salvi From: allegorithmic

  • Procedural Wood Pixel Patterned

    Procedural Wood Pixel Patterned for Archviz

    Here is the entire graph of the Pixel Patterned substance. This wooden block assembly is used in architecture, often to delimit spaces in a house or simply for interior decoration. This material is esthetic and gives a natural feel within the house.

    First of all, we’ve defined the essential points of the substance, namely the choice of color, the visible wood veins and the number of blocks.

    For the color, I used wood stain shades used in the industry, with the Gradient Map node to choose the hue. I also used the Glaze Selection parameter and varied the hue areas using the Noise Selection in order to have as many choices as possible.

    For the wood veins, I have created several patterns that can be tweaked using the Vein Selection Slider.

    For the top of the sticks, I mixed multiple grunge and noise generators with a warp and a spherical shape.

    Substance Brick:

    The slope of the brick is essential for this substance. Basically, it is a linear gradient in the X-axis from black to white then from white to black. The problem is that when varying the position of the angle to one side the gray values ​​are crushed and no longer render the linear gradient curve.

    After several tests, we used the Pixel Processor to manage the slope. Besides being very fast, it allows us to keep the linear gradient to its maximum range when moving the X-axis with the slider.

    Here is the view of the Pixel Processor to control the X-axis with a slider.

    Next, simply plug it into the Tile Generator or Tile Sampler and expose the desired number of bricks in X and Y.

    For realistic substances like terracottas, the base color is key to the realism of the substance. To achieve this, we needed to assemble several noises at different scales, which makes it possible to obtain information with varied details.

    Some of the results :

    For the Bricks Bond Variations substance, every pattern was created in a subgraph. All subgraphs are composed as shown in the image (below). The information is then assembled in a different channel with the RGBA Merge node. We preferred to create them this way in order to make them reusable in other graphs.

    Once created, we can find them in the brick substance. With the Grayscale Conversion node, we can retrieve information from each channel. This method also allows us to add new patterns in the future for all substances that use them.

    In each pattern, we will find the pattern in R, the random color in G, the mask if there is one in B and the slope in A.

    For the bricks depth details I used a simple technique with safe transform and masking. With a Slope Blur node I created the rock aspect and the volume of the brick depth, with a safe transform I randomize the result x number of time.

    I used the Blend node to merge them. To do so, I select the result of the pattern with the randomized colors as a mask input. For each blend I used a Histogram Shift node to change the choice of mask obtained. This saves me time by varying a single noise result.

    Here is the layer of masks:

    Some different substance results:

    Terrazzo Generator Substance:

    The Terrazzo is commonly used in architecture. This material is easily recognizable due to its inserts. It is often composed of variable-sized inserts. To respond more easily to a wide choice of terrazzo, we have chosen to control them with layers of inserts. Thus we find in the graph the creation of the inserts.

    The starting point for this substance is to be able to control all aspects of this material. I divided the inserts into 3 levels.

    For each insert level, the user can handle density, size, color, color variation, intensity of normal / height, roughness, metallic.

    In order to avoid too many parameters, we had to make some compromises – notably for color. Instead of exposing X colors for each level of insert, we have created a parameter Color share that allows us to pick colors in the other levels of insert thanks to a slider.

    The creation of this Terrazzo generator has been made based on the feedback of Benoit Campo from Paris Picture Club.

    Parquet Substance:

    For the Parquet substance, we worked so that we could reuse the filters for each type of wood. Thus we have in a subgraph the type of wood, a subgraph for the type of pattern and a final filter to split the wood material into boards.

    For each type of wood, you can choose a type of finish (natural, varnish, etc.) in the details, which is super useful. Finishes save time in the choice of flooring.

    It is also possible to change the pattern used for the layout of the floor:

    Now you know more about how we designed this this first Substance Source – Architecture Selection update together with Gaëtan Lassagne. Now, it’s your turn to play!

    Credits: Damien Bousseau From: allegorithmic

     

  • V-Ray Denoiser Quick Tutorial

    Take a look at how the V-Ray Denoiser works, and what can be achieved with it. You’ll also learn how to use the V-Ray Denoiser as a standalone animation tool. You can  also download  the 3d model below for you to enjoy and  try:


    Credits to: Chaosgroup

    Free V-Ray Denoiser 3D Scene:

     

  • Interactive Denoising with Nvidia AI

     Interactive Denoising with Nvidia Artificial Intelligence

    Good design is obvious: You know it when you see it.

    What’s less apparent is the amount of trial and error behind the process to achieve it. Designers, manufacturers and other creative types have to try multiple variations of an idea. Each time they render an image, then they examine, adjust, validate and try yet another variation.

    The more time they have to iterate, the better the final outcome. Of course, time is money, and deadlines loom.

    NVIDIA CEO and founder Jensen Huang showed at the GPU Technology Conference today how NVIDIA is advancing the iterative design process to accurately predict final renderings by applying artificial intelligence to ray tracing. (Ray tracing is a technique that uses complex math to realistically simulate how light interacts with surfaces in a specific space.)

    The ray tracing process generates highly realistic imagery but is computationally intensive, and can leave a certain amount of noise in an image. Removing this noise while preserving sharp edges and texture detail, is known in the industry as denoising. Using NVIDIA Iray, Huang showed how NVIDIA is the first to make high-quality denoising operate in real time by combining deep learning prediction algorithms with Pascal architecture-based NVIDIA Quadro GPUs.

    It’s a complete gamechanger for graphics-intensive industries like entertainment, product design, manufacturing, architecture, engineering and many others.

    The technique can be applied to ray-tracing systems of many kinds. NVIDIA is already integrating deep learning techniques to its own rendering products, starting with Iray.

    Iray

    How Iray Interactive Denoising Works

    Existing algorithms for high-quality denoising consume seconds to minutes per frame, which makes them impractical for interactive applications.

    By predicting final images from only partly finished results, Iray AI produces accurate, photorealistic models without having to wait for the final image to be rendered.

    Designers can iterate on and complete final images 4x faster, for a far quicker understanding of a final scene or model. The cumulative time savings can significantly accelerate a business’s go-to-market plans.

    To achieve this, NVIDIA researchers and engineers turned to a class of neural networks called an autoencoder. Autoencoders are used for increasing image resolution, compressing video and many other image processing algorithms.

    Using the NVIDIA DGX-1 AI supercomputer, the team trained a neural network to translate a noisy image into a clean reference image. In less than 24  hours, the neural network was trained using 15,000 image pairs with varying amounts of noise from 3,000 different scenes. Once trained, the network takes a fraction of a second to clean up noise in almost any image — even those not represented in the original training set.

    With Iray, there’s no need to worry about how the deep learning functionality works. We’ve already trained the network and use GPU-accelerated inference on Iray output. Creatives just click a button and enjoy interactivity with the improved image quality with any Pascal or better GPU.

    Iray deep learning functionality will be included with the Iray SDK we supply to software companies, and exposed in Iray plugin products we produce later this year. We also plan to add an AI mode to NVIDIA Mental Ray. We expect renderers of many kinds to adopt this technology. The basis of this technique will be published at the ACM SIGGRAPH 2017 computer graphics conference in July. Learn more here.

    Knowledge Source Credits to :
    Nvidia Artificial Intelligence

     

  • Vray Resumable Rendering

    What is resumable rendering?

    In short, resumable rendering is the ability to have incomplete renders resume where they left off. The rendering could have stopped because of some outside circumstance, such as a power failure, or have been stopped based on the needs of the user.

    In the next 3.5 service pack of V-Ray, we will be introducing resumable rendering as a new feature. This will first come out in V-Ray for  3ds Max, and then released for the other platforms. To use it, simply turn on Resumable Rendering in the VFB settings in the render dialogue or pass the -resume=1 option to V-Ray Standalone. You will also have to set a time interval for incremental saves if you are using progressive rendering.

    Resumable Rendering

    Please note that this feature is still under development and some of the functionality may change in the final release of the service pack.

    Two type of resumable rendering in V-Ray:

    As you know, V-Ray has different ways to render. For resumable rendering, the difference is mainly between bucket rendering and progressive rendering.

    Bucket rendering:

    With bucket rendering, the case is fairly simple. V-Ray writes the image as each bucket drops as part of a sidecar .vrimg file. When the rendering is resumed, V-Ray reads the partial .vrimg file and picks up on the next buckets that need to be rendered. The light cache is also stored in the .vrimg file so V-Ray doesn’t need to recompute it when resuming the render.

    Progressive rendering:

    In this case, you need to set a time interval in the Resumable Rendering settings which tells V-Ray how often to save the state of the rendered image so that it can be resumed from that point forward. V-Ray will save a sidecar .vrprog file that has all the information that V-Ray needs to resume the progressive rendering. In addition to the contents of the progressive buffer, the light cache is also stored in the file so that it doesn’t have to be recomputed when resuming. After stopping and resuming the rendering, V-Ray will read the .vrprog file and pick up the rendering process where it left off.

    A few things to consider:

    Since this process relies on either a sidecar .vrimg or .vrprog file to be saved, it will save that file in the directory where you are saving the final image. Both files can be large as they contain a lot of data. This is especially true for the .vrprog as it has all the needed data for the whole image, not just the completed buckets.

    When a rendering is resumed, there is still some preparation that needs to be done before the rendering starts that has to be redone. This includes scene prep, and texture loading. The GI light cache is saved, but the irradiance map is not and would have to be recalculated.

    Use cases:

    Rendering got stopped by outside forces:

    There are many reasons that an outside situation could have caused a rendering to stop. The computer could have had a power failure, or ran out of ram, or you could have been rendering on the Cloud such as Google Computer Engine which offers Preemptible VMs. In this last case, the VMs are significantly cheaper at 20% of the cost of standard VMs. The issue is that Preemptible machines can be recalled at very short notice. If this happens, a new VM can come back up and resume where the rendering left off.

    vms_01

    Choosing to stop a render:

    A user may choose to stop the rendering on purpose. This could be because the current rendering is taking too long and there is a rendering that of a higher priority that needs to be done right away. In that case, you can easily stop the rendering without losing any progress when you resume it.

    Another case could be set up as part of the render farm policy that all renderings are stopped after certain amount of time to ensure that every shot gets rendered overnight. If you are using progressive rendering, a grainier version of the render will still be available to review and can be resumed if the rendering looks good enough to warrant the full quality.

    Rendering is stopped in the middle of rendering

    Rendering is stopped in the middle of rendering

    resume_bucket_b_01

    Rendering is resumed and the buckets pick up where they left off.

    Incremental animation rendering:

    Depending on your render manager, a simple script could be set up so that the entire animation is rendered for example at 5 minutes a frame and then resumed to render for another 5 minutes until the rendering has reached the desired quality. This means that no matter what, you will have a version of the animation that can be seen in it’s entirely that will continue to incrementally get better as it stays on the farm with every pass.

    Keep in mind that, based on the fact that your scene still needs to be loaded, and prepped for every instance of the resumed rendering, this in itself can take a bit of time. So it is recommended that you don’t do very short increments of your rendering such as 30 seconds.

    resumable_progressive_01

    Conclusion:

    Resumable rendering is an important feature that could drastically change your workflow and choices you make while rendering. It could also greatly reduce the anxiety associated with long renders. We have only listed a few examples of uses cases for resumable rendering but are eager to hear of other ideas and examples of where this feature could change the way you work.

     

    Knowledge Source Credits to : Chaosgroup Labs

     

  • Botelya ng Buhay

    Check it out some tricks and tools of the trade in this making of: “Bottles of Life” and check where is the rat hiding 🙂

    Click 3dteamz slider < Left – Right > and Hit Play button below:


    from Vray Certified Professional: Farid Ghanbari

     

  • What is Visual Composition

    Composition! Everybody heard of it?  What is it?

    Imagine purchasing a book and opening it. Only to find out that pages where out of order, text is hard to read, and the story is rambled in no particular direction, Its exactly the same as a badly compose image.

    What is Visual Composition  – is about arranging elements in a scene in a pleasing and easy to read manner. Check hit play button below  to learn this very important rules of third in the jungle that might help us improve our visuals.

    Enjoy and don’t forget to take the most important notes every 3D Artist should know…

    Credits to: Andrew Price

    www.3dteamz.com – We don’t just share, We carefully pick the right knowledge from  top professionals and experienced people in the industry that might help you succeed!

  • Exterior Lighting Setup

    One of the most anticipated tutorials is finally out. We admire his work and the way he delivers his renderings. He never fails to amaze us for the quality output he shared. We are thankful that he let us publish his first tutorials in Exterior Lighting Setup for everyone to learn from it. Please scroll down below our Q&A and his final render and settings.

    This slideshow requires JavaScript.

     

    Featuring: Junangelo Ran
    Interior Designer/Visualizer

    1. Can you tell us a little bit about yourself? like how long are you working in this industry?
    I’m Junangelo Ran, I graduated BSIT year 1998 and start working in this kind of field since year 2000. First I worked as Cad Operator, then Cad, 3dsmax & PS Instructor and now Interior Designer/Visualizer.
    I’m doing rendering since year 2004 using 3dViz scanline and by the year 2008 I started using 3dsMax with Vray.

    2. Can you share the process of the rendering you shared to us.
    Yes , I am very happy to share what I had learned from google and youtube 🙂.

    Set the gamma first

    Vray Setting/Final Render

    Vray Physical Camera & Vray Sun Setting

    Vray Domelight setting for Environment as GI & Reflection

    • No Vray Sky
    • Environment off

    Scene (Camera & Sun location)

    Final Scene

    Raw Render & Render Elements

    • Vray ExtraTex is for additional ambient occlusion
    • Vray ZDepth is for blurring or some fog for the back plants and trees
    • Vray Wirecolor is for quick selection in Photoshop
    • Vray Reflection is for additional reflection

    Post Process in Photoshop

    View 1

    View 2

    View 3

    3. What tips do you share to the community in working this kind of projects?
    Do not stop searching and practicing. 🙂

     

    Interviewed by:
    3DTEAMZ

    We like to thank him for sharing his knowledge with everyone. Please stay tuned for his next tutorials and it’s coming out very soon…

     

  • Camera Simulator

    This tool will help you understand and play the basic DSLR Camera Controls and the outcome without buying expensive actual camera.

    Personally, tried this tool to match and experiment Vray physical camera settings. You may like to try it yourself too. Enjoy simulating below:

    DSLR Controls:

    ISO:
    -ISO refers to how sensitive the “film” will be to the incoming light when the picture is snapped. High ISO settings allow for faster shutter speeds in low light but introduce grain into the image. Low ISO settings produce the cleanest image but require lots of light. Generally, you will want to use the lowest ISO setting that your lighting will allow.

    Shutter speed:
    -Shutter speed is how long the shutter needs to be open, allowing light into the camera, to properly expose the image. Fast shutter speeds allow you to “freeze” the action in a photo, but require lots of light. Slower shutter speeds allow for shooting with less light but can cause motion blur in the image.

    Aperture:
    -Aperture, or f-stop, refers to how big the hole will be for the light to pass through when the shutter is open and the picture is snapped. Lower f numbers correspond with larger holes. The important thing to remember is this: the higher the f number, the more things in front of and behind the subject will be in focus, but the more light you will need. The lower the f number, the more things in front of and behind the subject will be out of focus, and the less light you will need.

    Focal length:
    -Moving this slider is the same as zooming in and out with your lens. A wide, zoomed out setting creates the greatest depth of field (more things are in focus) while zooming in creates a shallower depth-of-field (typically just the subject will be in focus).

    Distance:
    -Use this slider to simulate how close or far you are in relation to the subject.

    Mode:
    -The exposure modes of an SLR let you control one setting while the camera automatically adjusts the others. In Shutter Priority mode, you to set the shutter speed while the camera sets the aperture/f-stop. In Aperture Priority mode, you set the aperture/f-stop while the camera sets the shutter speed. Manual mode is fully manual—you’re on your own! Refer to the camera’s light meter to help get the proper exposure. Although every real SLR camera has a “fully automatic” mode, there is not one here—what’s the fun in that?

    Lighting:
    -Lighting is the single biggest determinant of how your camera needs to be set. With only a few exceptions, you can never have too much light. Use this slider to experiment with different indoor and outdoor lighting conditions.

  • Photorealism Explained

    How to achieve CG Photorealism. Some tips and tricks from the guru over the last 11 years to make images more realistic. Check them out below:

    Why photorealism is the most important skill you can focus on
    The 4 Building Blocks of Photorealism
    Simple tips and tricks to make more photorealistic renders

    If you’re a CG artist hoping to work in the industry, photorealism is the most important skill you can focus on. It not only helps you to learn and understand how real life looks (a crucial step for creating cartoonish exaggerated styles), but is also highly in-demand for hollywood, gaming studios and new industries.

    If you can achieve photorealism results, you’ll go far.
    But as any artist will tell you, photorealism is hard!
    So how do you achieve it?

    In this 54 minute video you’ll discover: Click Play button below.

    Credits to: Andrew Price

  • V-Ray RT GPU Shaders Breakdown

    Be inspired by the images and shaders breakdown video tutorial below:

    This slideshow requires JavaScript.

    Basil, wood, details shaders breakdown. V-Ray RT GPU videotutorial.


    Credits to: Dabarti

  • Vray Masters in Class Singapore 2017

    Featuring: Grant Warwick.
    Together with the lucky few!

    This slideshow requires JavaScript.

    Grant Warwick is the Director of Mastering CGI. Grant left his career as a full time CGI artist to focus on his teaching business – Mastering CGI, driven to bring the CGI world the best set of training courses ever on software such as V-Ray and 3DsMax. His courses have subscribers from a number of high profile studios and individuals from all around the world including ILM, Weta and Sony.

     

  • Vray3.2 MasterClass 2015

    Featuring: 
    Lyudmil Vanev – CG Specialist Chaos Group
    Hartanto Gautama Utama – VRay Licensed Instructor

    This slideshow requires JavaScript.

    Lyudmil is a CG professional with more than 10 years’ experience in the field of architectural visualization, animation and visual effects. Before joining Chaos Group, he worked as a CG specialist and compositor at some of the biggest VFX studios in Bulgaria. Lyudmil joined the Chaos Group CG team in 2014 and since then he’s focused on helping companies and professionals get the best out of V-Ray rendering engine.

     

  • Videos

    Tips & Tricks Videos

    Click on the top playlist button for more recommended tutorials…